- e um wn em _=m -/--‘

|

APPENDIX-3

- N88-13597



CSE-87-00004

A RUDIMENTARY DATABASE FOR
THREE-DIMENSIONAL OBJECTS
USING STRUCTURAL REPRESENTATION

James P. Sowers



A RUDIMENTARY DATABASE FOR THREE-DIMENSIONAL

OBJECTS USING STRUCTURAL REPRESENTATION*

James P. Sowers

Computer Science and Engineering Department
University of South Florida
Tampa, Florida

* This project was supported by NASA-Langley grants
NAG-1-772 and NAG-1-632.



I. INTRODUCTION

A database which enables users to store and share the
description of three-dimensional objects in a research environment
is presented. The main objective of the design is to make it a
compact structure that holds sufficient information to reconstruct
the object. The database design 1is based on an object
representaion scheme which is information preserving, reasoﬁably
efficient and yet economical in terms of the storage requirement.
The determination of the needed data for the reconstruction process
is guided by the belief that it is faster to do simple computations
to generate needed data/information for the construction than to
retrieve everything from memory.

The next sectibn discusses some recent technigues of
three-dimensional representation that influenced the design of the
database. Section III gives the schema for the database and the
structural definition used to define an object. Section 1IV
contains the user manual for the software developed to create and

maintain the contents of the database.

II. BACKGROUND

Most of the three-dimensional object representation schemes
[1-4] can be classified into three major categories: surface or
boundary, sweep, and volumetric, where a representation scheme is a
formal system for descibing shape or some aspect of shape along
with rules that specify how that scheme is to be applied to a
shape. The description resulting from applying the scheme to a
given shape is the representation in that scheme. When deciding on
a representation scheme for modeling objects the following
properties should be considered [3,5]:

domain - a clearly defined descriptive power for the scheme,

validity - the representation for an object is in the range of



representations for the scheme,

unambiguity - the representation corresponds to a single
object in the range of valid representations,

uniqueness — the ability to easily assess the equality of two

objects in that for a given object a single representation is
formed,

consistency - the same representation is always produced for a
given object and scheme,

conciseness - the size, verbosity, or redundancy of the
representation, B
ease of creation - the ease with which valid representations
may be created with the modeling system, and

efficacy for application - the representation is condusive
to good, efficient algorithms for computing useful
functions.

Figure 1. Surface Representation

Surface or boundary representation of an object [6,7] is

represented by a set of "faces" or "patches" that are bound

2



together by a set of rules to make up the object ([see figure 1].
Some current approaches include Coons patches ([8], bicubic surface
patches, Bezier methods [9], and B-splines. Even though boundary

representation is unambiguous, it is not unique and the wvalidity
is not guaranteed. o

Sweep representation of an object is repfesehted

two-dimensional set that is translated along a line.

by a
Two common
methods are generalized cylinders ([10,11] and symmetric axis
transform, also known as the medial axis transform, which was
introduced by Blum [12]. Nackman and Pizer present a theory to
expand the symmetric axis transform to three dimensions in {[13].
The definition of the two-dimensional symmetric axis transform also
applies in three dimensions, except that maximal disks become
maximal spheres and the symmetric axis becomes the symmetric
surface, see figure 2. Generalized cylinders (generalized cones),
is analogous to symmetric axis transform in three dimensions. A
generalized cylinder is a solid whose axis is a three-dimensional
space curve, and its cross sections are orthogonal to its axis, see
figure 3. Also, the two-dimensional set defining the generalized
cylinder may be allowed to rotate about the akis, while it is
translated along the axis.

Figure 2. Example of 3-D Symmetric Surface

Sweep representation works well with manmade objects that

have an axis of symmetry. It is concise, but.in general, it is not



unique.

Volumetric representation of objects [3,14-17] is accomplished
by representing an object in terms of more primitive solids. The
three representations are: 1) spatial occupancy = values are
represented as a three-dimensional array of cells which may be
marked as filled or not with matter {[15], 2) cell deComposiéién -
cells are more complex‘in shape but still do not share volumes, so
the only combining operation is "glue" [16,17], and 3) constructive
solid geometry ~ complex solids are represented as various ordered
operations of simpler objects (primitives), by means of
psuedo-Boolean set operations. The primitives used could be simple
geometric solids such as prisms, cylinders, ellipsoids, and boxels
{18] to more complicated primitives such as superquadrics [19].

Volumetric representation is adequate to comprise most

conventional, unsculptured objects and is unambiguous but is not
unique.

Figure 3. A Generalized Cylinder with some Cross-Sectional
Coordinate Systems

III. DATABASE DESIGN

A general model, similar to the one described in [20], is used

for the object description in the database, since it allows for the



ability to save properties about the object, such as global
attributes and parameters. An object is defined as a 6-tuple
o={C, N, A, P, R, PA}, where C is the class of the object, which
defines a set of similar objects, N is the name of the object, A is
the set of attributes for the object, P is the set of primi;ives
used to make up the object, R is the set of relatidnéhip funéEions
used to describe the associations between primitives in set P, and

PA is the set of parameters. Parameters in this structure are
basic characteristics about the object, such as material
composition.

CLASS / = \‘ PARAMETERS
] , l

ATTRIBUTES PRIMITIVES [¢< RELATIONSHIPS

Figure 4. Database Schema

Figure 4 shows the database Schema, with the notation borrowed
from Martin [21]. The database file structure consists of a main
file and a set of attribute, primitive, and relationship files for
the objects in the database. For every object in the database a
record that contains the name, class, parameters, and pointers to
the attribute, primitive, and relationship files for the object is
contained in the main file. The attribute file for an object

consists of records that contain the attribute name and quantity.

5



The primitive file for an object consists of records that contain
id tag, primitive id type, and three parameters, discussed further
in Section III.A. The relationship file for an object consists of
records that contain the operator, the two primitive id tags, and
six parameters defining connection points and orientation,
discussed further in Section III.B.

III.A PRIMITIVES

The present set of volumetric primitives consist of a
four-sided prism, a right-wedge, a left-wedge, an ellipsoid, a
cylinder, and a cone, which is shown in the appendix. The
primitives as shown in the appendix give the "home"” position for
each primitive, and the format for the type id and the three
parameters. The three parameters simply give the overall width,
depth, and height of the primitive.

A record in the primitive file contains the id tag, primitive
id type, and the three parameters. This information is used to
determine the configuration of the primitive. The id tag is an
unique integer value to distinguish the primitive from the others
in the set. The primitive id type is used to classify the primary
shape of the primitive and the three parameter values give the
dimension for the final shape of the primitive. For example, if
the id type is a cylinder and the values of the parameters are X=5,
Zz=1, and D=3, the shape of the primitive would be as shown in
figure 5.

III.B RELATIONSHIP FUNCTIONS

The relationship describes how the primitives relate to each
other so that the object can be reconstructed. The relational
operations used are analogous to the ones employed by constructive
solid geometry [22], hence the same limitations as mentioned under

volumetric representation apply. A record in the relationship file

-



contains an operator, two ids, two connection points,
rotational wvalues.

and two

The general format for the relationship is as
follows:

(OP, 1Dy, IDj’Xi’ Yi 24, Xj’Yj’ Zj'in' RYiIRZiIij'RYijzj)

cmcmenedeea-

-

-—— -

’ |

Figure 5. Cylinder with X=5, Z=1, and D=3 in home position

Where ID; and ID4 are set to id tag values to identify which
primitives, from the set of primitives, are to be used for the
operation. The (Xi'Yi'Zi) and (Xj,Yj,Zj) points are values to
describe where the two primitives will be connected. The valid
range of values, relative to the "home" position and specific

primitive type are defind as -Pj/2 <= V; <= P;/2; P3 1is the

7



parameter value for the primitive in the ith position, where i=1, 2,

or 3, and Vi is the value for the ith position. (Rxj,Ry;,Rzy) and

(ij,Ryj,sz) are the angles that the primitives are rotated after

being connected; the rotation is about the connection point.

Union, intersection, and subtraction are the three operators
employed to operate on the primitives. The operations, with their
present restrictions, are defined below.

union operation:

(+,ID3,ID4, Xy, Y5, 24,%X4,Y4,24,0,0,0,Rx3, Ry, Rz)

J’
This is the union operation which connects the surface point
(XJ,Y ,Z :) of primitive j to the surface p01nt (X4 4r23) of

prlmltlve i, with primitive j being rotated about its point of
connection by (RxJ,RyJ,Rz ) and the rotation angles for

primitive i are set to zero.

intersection operation:
(*,IDy,IDy,X;,¥4,%4,0,0,0,0,0,0,Rx4, Ry, Rz )

This is the intersection operatlon which places prlmltlve |
in prlmltlve i, with the origin point of primitive j being
located in primitive i at point (X;,Y4,2y) and primitive j

being rotated about its connection point (origin) by
(ij,Ryj,sz). The rotation angles for primitive i are set to

Zero. ~

subtraction operation:
(-, 1Dy, 1Dy, X;,Y;,24,0,0,0,0,0,0,Rx4,Rys,Rzy)

This is the subtraction operation which is identical to the

intersection operation except primitive j is removed from
primitive i.

The next section contains the user manual for the database
that has just been described.



Iv OPERATIONS ON THE DATABASE
IV.A Entering an object

Name:

After the main menu appears and selection of the.CREATE
OBJECT option, the following prompt will appear: :

Please enter object name:

Enter any string up to 80 characters in 1length, but only the
first 15 significant characters are kept, and the string must
contain at least one non-blank character. Leading and trailing
blanks are stript, however embedded blanks are not stript from
the string. If an invalid name is entered the wuser will be
prompted again for another name. Also if object already appears

in the database the user will be asked for another name. The
following examples show valid and invalid names.
Example 1.
VALID ENTRY
NAME _ COMMENT
1 one non-blank
A one non-blank
AlCS any character legal
bbbALPHAbbD leading and trailing blanks ignored
ALPHA recognized same as above
Alpha different by case of lettering
abcd1234efgh5678ijk only a through 7 is considered
good name embedded blank left in name
INVALID ENTRY
{cr> null string
bbbbbbb non-blank rule broke
Class:

The following prompt will appear for entry of object class:

Please enter object class:

The criteria for a valid class name is the same as for a valid
object name. 1f an invalid class is entered the user will be
prompted again for entry of class name.

Parameters:

Currently the parameters for an object have not been fully
defined and the only parameter presently being 1looked for is the
object's material composition. The following prompt will appear:

Please enter primary material composition of object:
The criteria for a valid material entry is the same as for a

valid object name. If an invalid material entry is made the user
will be prompted again for entry of material.



ORIGINAL PAGE IS
OF. POOR QUALITY

Attributes:

The present structure for object attributes is for name a
quantity of attribute. One or more attributes can be entered £
any one object. The following prompt will appear:

a

Please enter attribute:

The criteria for a valid attribute entry is the: “same as for

valid object name. If an invalid attribute entry is made t
user will be prompted again for entry of an attribute. After
valid attribute is entered, the quantity (integer value) will
asked for and the following prompt will appear:

Enter quantity of this attribute: - ' l
No error correction is offered. After entry of quantity the us
will be prompted, by the following, for continuation: e‘

Enter another attribute (y/n)?

To continue entering attributes, enter either y or Y. To sto'

entering attributes, enter either n or N, if any other character
is entered, the default is to stop.

Primitives: l
There are presently six primitives available for composing

an object as seen in appendix A. The following menu will appeal
for entering primitives comprising the object: :

PRIMITIVES QTY I
1) Four-sided prism #
2) Right-wedge #
3) Left-wedge # I
4) Ellipsoid #
5) Cylinder #
6) Cone #
0) Quit I
Choice: A l

The QTY column reminds the user of the number of primitives
entered for each type. Depending on which primitive is selecte
the user will be prompted to enter the following dimensions fo
that primitives: enter the X-axis diameter or length, the Z-axis
diameter or height, and the Y-axis diameter or depth of th
primitive. The values expected for each is a real number, ni
error correction is offered. The 0 option is wused to qui®
entering primitives.

Relationship:

The relationships describe how the primitives entered above
relate to each other so that the object can be reconstructed. Th
format for the relationship is as follows: i

(OP,PRIM ,PRIM; ,Xi,Y{,2{,X;,Y;,2;,Rx; ,Ry; ,R2z{ ,RXj +Ry; ,Rz; )

10



union operator:
(+,PRIML,PRIM5,XL,YL ey o X5 .Y5 , 25 +0,0,0,Rx;,Ry; ,Rz; )

This is the union operator which connects the surface point
(X;,Y; ,2;) of primitive j to the surface point (X;,YiL,Z% ) of

pr1m1t1ve i, with primitive j being rotated about its point
of connection by (Rx; ,Ry; ,Rz; ).

intersection operator:
(*,PRIML,PRIMJ,XL,Y; ,ZL,O,O,O,O,O,O,RX_; +RY; ,RZ; )

This is the intersection operator which places primitive j
in primitive i, with the origin point of primitive j being
located in primitive i at point (X{,Y.,2y) and primitive j
being rotated about its origin point by (Rx; ,Ry; ,Rz; ).

subtraction operator:
(-,PRIM_ ,PRIM; ,X;,Y, ,2.,0,0,0,0,0,0,Rx; ,Ry; ,RZj)

This is the subtraction operator which is identical to the

intersection operator except primitive j is removed from
primitive i.

For entry of relationship the following prompt will appear:
Number of operations entered: #
Enter first primitive tag id:

The first prompt reminds the user of the number of relationship
operations entered so far. The second one is looking for the tag
id (integer value) for the first primitive involved. No error
correction is offered. The next prompt to appear is:

Enter second primitive tag id:

Here enter the tag id (integer value) for the second primitive
involved. No error correction is offered. The next prompt to
appear is:

Enter desired operator (+,-,%*):

Depending on the operator entered, the user will be prompted to
enter the appropriate (real) values for the connection points and
orientations. If the user does not want to enter a relationship,
enter a character other than the operators and the current
operation will be ignored. After entry of an operation the
following prompt will appear:

Enter another operation (y/n})?
To continue entering relationships, enter either y or Y. To stop

entering relationships, enter either n or N, if any other
character is entered, the default is to stop.

11



IV.B Deleting an object

After selecting the DELETE OBJECT option in the main menu,
the following prompt will appear:

Please enter object name:

Enter any string up to 80 characters in 1length, -but only the
first 15 significant characters are kept, and the string must
contain at least one non-blank character. Leading and trailing
blanks are stript, however embedded blanks are not stript from
the string. 1If an invalid name 1is entered the wuser will be
prompted again for another name.

If name entered exist it will be removed from the database I
along with all other files or information relating to it,
otherwise an error message will appear stating no object with
that name presently exist in the database. :

IV.C Vviewing the database

LIST OBJECTS - This option for viewing the database list the '
objects by name, a page at a time. To stop
viewing the database, enter either n or N to l
the inquiry about continuing.

LIST CLASSES - This option for viewing the database list the
classes and the objects associated with each
class, a page at a time. To stop viewing the
database, enter either n or N to the inquiry
about continuing.

IV.D Changing an object

After selecting the UPDATE OBJECT option in the main menu.
the following prompt will appear:

Please enter object name: l

Enter any string up to 80 characters in 1length, but only the
first 15 significant characters are kept, and the string must
contain at least one non-blank character. Leading and trailing
blanks are stript, however embedded blanks are not stript from
the string. 1If an invalid name 1is entered the wuser will be
prompted again for another name. l

Name change:
If the object exist in the database the following prompts
will appear: I
Object's name: <Hopefully the one the user entered)
Change object‘'s name (y/n)? I

To change name, enter either y or Y, then - the following promptl
will appear:
12 |



-
P - L

Please enter object name:

The criteria for name is the same as for entry of name for

change. If an invalid name is entered the user will be prompted
again for another name. :

Class change: - ) .
For changing the class, the following prompt will appear:

Object's class: . <class for object>

Change object's class (y/n)?

To change the class of the object, enter either y or ¥, then the
following prompt will appear:

Please enter object class:

The criteria for a valid class entry is the same as for a valid

object name. If an invalid class is entered the user will be
prompted again for a class.

Parameter change:

The present format for parameters is undefined and the only
thing contained in this structure is the primary material

composition of the object. The following prompt will appear for
changing the material:

Object‘'s material: <material of object>
Change object's material (y/n)?

To change the material, enter either y or ¥, then the following
prompt will appear:

Please enter primary material composition of object:

The criteria for a valid material entry is the same as for a
valid object name. If an invalid material is entered the user
will be prompted again for a material.

Attribute change:

For changing the attributes of the object, the following
prompt will appear:

Change object's attributes (y/n)?

To change attributes, enter either y or Y, then the

following
prompt will appear:

Attribute is as follows:

name: <attribute>
quantity: #

Do you want to C)hange

D)elete
or get N)ext attribute

13



i
ORIGINAL PAGE IS
OE POOR QUALITY l

Change:

To change this attribute of the object, enter either ¢ or C,
the following prompt will appear:

Please enter attribute:

The criteria for an attribute is the same as for a:--valid objectl
name. If an invalid attribute 1is entered the user will be
prompted again for another attribute. Then the wuser will b
asked for the quantity of this attribute by the following prompt:

Enter quantity of this attribute:

An integer value is being looked for and ﬁb error checking iJl
offered. If only the quantity is desired to be changed, select

the C)hange option and reenter the attribute then when asked fo1|
quantity enter the change.

Delete:

To delete the currently displayed attrlbute, enter either 4'
or D, no prompt will appear for this option.

Next:

If no action 1is desired for the currently displayecl
attribute, to retrieve the next attribute, enter either n or N.
No prompt will appear for this option. This allows a way tql

review the attributes associated with an object, without changin
them.

Add: el
After current attribute 1list is reviewed then you have th

option to append more attributes to the list. The following
prompt will appear for additions: - : I

Add new attribute (y/n)?

To add another attribute, enter either y or ¥, and the user wil
be prompted for attribute and quantity in the same manner as fo
changing attribute. Entering either n or N will stop changes to

attribute 1list, also if any other character is entered th
process will stop. . I

Primitive change:

For changing the primitives of the object, the followin'
prompt will appear:

Change object's primitives (y/n)?

To change primitives, enter either y or Y, then the following
prompt will appear: I

14



Primitive is as follows:
Tag: #
Id: <primitive code>
Length/X-axis: #
Depth/Y-axis: #
Height/Z-axis: #

Do you want to D)elete
or get N)ext primitive

Delete:

To delete the currently displayed primitive, enter either d
or D, no prompt will appear for this option. .

Next:

If no action 1is desired for the currently displayed
primitive, to retrieve the next primitive, enter either n or N.
No prompt will appear for this option. This allows a way to
review the primitives associated with an ob]ect without changing
them.

Add:
After current primitive 1list is reviewed then you have the

option to append more primitives to the list. The following
prompt will appear for additions:

Add new primitive (y/n)?

To add another primitive, enter either y or Y, and the user will
be prompted as follows:

PRIMITIVES

Four-sided prism
Right-wedge

Left-wedge

Ellipsoid

Cylinder

Cone

No creation of primitive

OAUTH W
S NP Nl N et it

Choice:

Depending on which primitive is selected the user will be
prompted to enter the following dimensions’ for that primitives:
enter the X-axis diameter or 1length, the Z-axis diameter or
height, and the Y-axis diameter or depth of the primitive. The
values expected for each is a real number, no error correction is
offered. The 0 option is used to quit enterlng primitives.

Relationship change:

For changing the relationships of the object, the following
prompt will appear:

15



Change object‘'s relationships (y/n)? l

To change relationships, enter either y or ¥, then the following
prompt will appear:

Relationship is as follows: ,
: First primitive id: <tag. #> _ . l
Second primitive id: <tag #> . -
- Operator: <*,—-,+>
Connection point for first id(x,y,z): #,4#,#

Rotation of first id(x,y,z): #,%, 4%
Connection point for second id(x,y,z): #,#%,#

Rotation of second id(x,y,z): #,#,#

or get N)ext relationship

Delete:

To delete the currently displayed relationship, enter either
d or D, no prompt will appear for this option.

Next: ' I

If no action 1is desired for the currently displayed
relationship, to retrieve the next relationship, enter either nl

Do you want to D)elete I

or N. No prompt will appear for this option. This allows a
way to review the relationships associated with an object,
without changing them.

Add: : '

After current relationship 1list is reviewed then you have
the option to append more relationships to the 1list. The
following prompt will appear for additions: l

Add new relationship (y/n)?

To add another relationship, enter either y or Y, and use

will be prompted as follows:

Enter first primitive id: I
Enter the tag 1id (integer value) for the first primitiv
involved. No error correction is offered. The next prompt tql
appear is:

Enter second primitive id: l

Here enter the tag id (integer value) for the second primitive
involved. No error correction is offered. The next prompt t
appear is:

Enter desired operator (+,-,*):

OF POOR QUALITY,
16

ORIGINAL PAGE IS '



Depending on the operator entered, the user will be prompted to
enter the appropriate (real) values for the connection points and
orientations. If the user does not want to enter a relationship,

enter a character other than the operators and the current
operation will be ignored.

IV.E Main menu

The following is the group of operations on’ the database,
which is described in section IV.

Create object

Delete object

List objects )
List classes

Update object

Quit

QWU & W
s S gt Vvt et ogut®

Choice:

ACKNOWLEDGEMENTS

Support for this project, from NASA-Langley Research Center
grants NAG-1-772 and NAG-1-632, is gratefully acknowledged.
Numerous discussions with and encouragement £rom the research
group (COVIRT*) members at USF, Mike Goode and Karin Cornils of
NASA-Langley Research Center is also acknowledged.

* COVIRT - COmputer Vision and Intelligent Robotics research
Team.

17




[10]

(11]

(12]

REFERENCES

J.K. Aggarwal, L.S. Davis, W.N. Martin, and J.W. Roach,
"Survey: Representation Methods for Three-dimensional
Objects,"™ in Progress in Pattern Recognition, L.K. Kanal and
A. Rosenfeld, Eds. North-Holland, 1981, pp. 377-391. . 7~

N. Badler and R. Bajcsy, "Three—-dimensional Representations
for Computer Graphics and Computer Vision," Computer
Graphics, vol. 12, pp. 153-160, August 1978.

A.A.G. Requicha, "Representations for Rigid Solids: Theéry,
Methods, and Systems," Computing Surveys, vol. 12, pp.
437-464, December 1980.

T.C. Henderson, "Efficient 3-D Object Representations for
Industrial Vision Systems,"™ IEEE Trans. Pattern Anal. and
Machine Intell., vol. PAMI-5, pp. 609-618, . November 1983.

C.M. Brown, "Some Mathematical and Representational Aspects
of Solid Modeling," IEEE Trans. Pattern Anal. and Machine
Intell., vol PAMI-3, pp. 444-453, July 1981.

A.R. Forrest, "On Coons and Other Methods for the
Representation of Curved Surfaces," Comput. Graphics Image
Processing, vol. 1, pp. 341-359, 1972.

R.E. Barnhill and R.F. Risenfeld, "Surface Representation
for Computer Aided Design," in Data Structures, Computer
Graphics and Pattern Recognition, A. Klinger, K.S. Fu, and
T.L. Kunii, Eds. New York: Academic, 1977.

S. Coons, "Surfaces for Computer-aided Design of Space
Forms," M.I.T. Project MAC, MAC-TR-41, 1967.

P. Bezier, "Mathematical and Practical Possibilities of
UNISURF," in Computer Aided Geometric Design, R. Barnhill
and R. Riesenfeld, Eds., New York: Academic Press, 1974.

T. Binford, "Visual Perception by Computer," Invited paper,
IEEE Systems Science and Cybernetics Conference, Miami,
December 1971. '

G. Agin, "Representation and Description of Curved Objects,"
Ph.D. Thesis, Stanford A.I. Memo, AIM-173, October 1972.

H. Blum, "A Transformation for Extracting New Descriptors of
Shape," in Models for the Perception of Speech and Visual
Form, W. Wathen-Dunn, Ed., Cambridge, MA: MIT Press, 1967,
pp. 362-380.

18



[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22)

L.R. Nackman and S.M. Pizer, "Three-dimensional Shape
Description Using the Symmetric Axis Transform I: Theory,"”
IEEE Trans. Pattern Anal. and Machine Intell., vol. PAMI-T7,
pp. 187-202, March 1985.

A.A.G. Requicha and H.B. Voelcker, "Solid Modeling: A
Historical Summary and Contemporary Assessment,” IEEE
Comput. Graphics Applications, pp. 9-24, March 1982.

I.. March and P. Steadman, The Geometry of Environment,
Cambridge, MA: MIT Press, 1974.

C.L. Jackins and S$.L. Tanimato, "Oct-trees and Their Use in
Representing Three-dimensional Objects," Comput. Graphics
Image Processing, vol. 14, pp. 249-270, Nov. 1980.

J.L. Bentley, "Multidimensional Search Trees Used for
Associative Searching," Commun. Assoc. Comput. Mach., vol.
18, pp. 509-517, September 1975.

E.P. Krotkov, "Thesis Proposal: Active Visual Perception for
Determining Spatial Layout,"™ Thesis, Dept. Computer and
Information Science, Univ. of Penn., Spring 1987.

R. Bajcsy and F. Solina, "Three-dimensional Object
Representation Revisited," Tech. Report MS-CIS-87-19, Dept.
Computer and Information Science, Univ. of Penn., March
1987.

L.G. Shapiro, "A Structural Model of Shape,™ IEEE Trans.
Pattern Anal. and Machine Intell., vol. PAMI-2, pp. 111-126,
March 1980.

J. Martin, "Computer Data-Base Organization," Series in
Automatic Computation, Prentice-Hall, 1975.

A.A.G. Reguicha and H.B. Voelcker, "Constructive Solid

Geometry," Tech. Memo 25, Production Automation Project,
Univ. Rochester, Rochester, N.Y., November 1977.

19





